Lead and osmium isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides

J.M. Warren, S.B. Shirey

Abstract

Single sulfides from abyssal peridotites have been analyzed for Pb and Re-Os to constrain the evolution of oceanic mantle composition. These represent the first analyses of Pb and Os isotopic compositions in the same sulfide grain. The sulfides are from Gakkel and Southwest Indian ridge peridotites, occur at < 0.1% modal abundances, and contain 0.001–0.4 ppm Re, 0.003–5 ppm Os, and 0.12–12 ppm Pb. Sulfide Pb isotopic compositions extend from depleted (e.g., $^{206}\text{Pb}/^{204}\text{Pb} = 17.0$) to enriched (19.6), covering a larger range than associated basalts. The Os isotopic range of sulfides is more restricted, but extends from depleted ($^{187}\text{Os}/^{188}\text{Os} = 0.116$) to enriched (0.150). Pb and Os concentrations and isotopic compositions co-vary, with correlation coefficients of 0.76–0.94. Both Pb and Re–Os isotopic data follow correlated $^{207}\text{Pb}/^{204}\text{Pb}$–$^{206}\text{Pb}/^{204}\text{Pb}$ arrays with a mean slope close to 3. Based on the observed Pb–Os isotopic data, the sulfides fractionate Pb and Os in their original sulfide melt phases. The Pb partition coefficient between sulfide melt and silicate melt is estimated to be $K_{\text{Pb}}^\text{Pb} = 2.8$, and the Os partition coefficient is $K_{\text{Os}}^\text{Pb} = 2.0$. The Pb isotopic compositions in the sulfides indicate that they host < 4% of the mantle Pb budget.

1. Introduction

The oceanic mantle has long been known to contain isotopic variations created by geologic processes much older than the 180 Myr of the oldest ocean floor (e.g., Gast et al., 1964; Sun and Hanson, 1975; O’Nions et al., 1977). Among the most striking of the variations is the isotopic composition of Pb in young (< 1 Ma) basalts from oceanic islands and ocean ridges, which fall along a well-correlated $^{207}\text{Pb}/^{204}\text{Pb}$–$^{206}\text{Pb}/^{204}\text{Pb}$ array that has a mean slope corresponding to a Pb–Pb age of ~ 1.8–2 Ga (e.g., Tatsumoto, 1966; Oversby and Gast, 1970; Sun, 1980; Chase, 1981). With such recently formed samples, this array clearly has no absolute age significance (Jacobsen and Wasserburg, 1979; Allegre et al., 1980; Hart, 1984; Albarede, 2001; Kellogg et al., 2007). Instead, it must record the integrated effects of a long history of mantle convection that may include prior ridge melting, the recycling of ancient oceanic crustal components, and the incorporation of ancient mantle domains residual after crust extraction and/or cratonization (e.g., Allegre, 1982; Zindler and Hart, 1986; Hofmann, 1997). An additional complication for Pb isotopes is that oceanic basalts are all enriched relative to the bulk composition of the Earth. Radiogenic material has rarely been found in either oceanic or continental crustal
samples, with the absence of unradiogenic material giving rise to the “first Pb-paradox” (e.g., Allegre, 1969; Hofmann, 2003).

To understand the details of mantle compositional evolution, including the generation of depleted components, the full range of mantle enrichments and depletions must be documented. This is difficult in basalts, because depleted components are undersampled, both by being retained in more refractory components and by their lower concentrations in melts (Liu et al., 2008; Warren et al., 2009). In contrast, more isotopically enriched components dominate the isotopic signature of melts as these, by definition, have higher elemental concentrations. Recent studies of abyssal peridotites, which are the residues of ridge melting, have found extreme depletions in Nd, Os, Sr, and Hf isotopes that are not observed in basalts (Cipriani et al., 2004; Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008; Warren et al., 2009; Stracke et al., 2011). However, analysis of Pb has remained difficult to accomplish in abyssal peridotites due to analytical difficulties associated with low concentration analyses (Warren et al., 2009). While < 10 published Pb isotopic analyses exist for abyssal peridotites (Roden et al., 1984; Warren et al., 2009; Burton et al., 2012), thousands of isotopic analyses exist for Pb – and other radiogenically variable elements, such as Sr, Nd, and Hf – in oceanic basalts (e.g., Zindler et al., 1982; Hart, 1984; Hofmann, 1997; Meyzen et al., 2007).

In this study, Pb and Os isotopic compositions have been measured together, for the first time, in the same abyssal peridotite sulfide grains, with the express purpose of constraining the long term evolution of oceanic mantle composition. The affinity of Pb (a chalcophile element) and Os (siderophile) for sulfides results in different behavior for these two elements compared to lithophile elements, such as Sr, Nd, and Hf, which are all incompatible during melting and are hosted in silicates. The goal is to use the Re–Os and Pb radiogenic isotope systems to see through current ridge melting processes to look at much older mantle processes. In addition, the preservation of more depleted signatures in abyssal peridotites compared to basalts suggests that peridotites may preserve evidence for unradiogenic Pb that is rarely observed in melts. The ability to measure Pb and Os together in peridotite sulfides provides a technique to identify where unradiogenic material is stored in the Earth and to examine why Pb isotopes in oceanic basalts define correlated arrays.

Samples were selected from ultra-slow spreading segments of the Gakkel and Southwest Indian ridges, with the aim of analyzing depleted peridotites to look at residual mantle components. Fe–Ni–Cu sulfides are present in these peridotites at low (< 0.1%) modal abundances interspersed with silicate phases, as is typical in peridotites (e.g., Lorand, 1989a; Alard et al., 2000; Luguet et al., 2003). Ratios of \(^{187}\)Os/\(^{188}\)Os are reported for 16 sulfides and Pb isotopic compositions for 12 sulfides, from 13 abyssal peridotites. These samples were picked as the most favorable for analysis out of 350 samples surveyed, based on sulfide abundance and grain size, combined with a low overall degree of sample alteration. Results indicate that sulfides contain less Pb than estimated in previous studies, but that they are powerful tracers for the compositional evolution of the mantle, particularly when combined with Os isotopes.

3. Sulfide mineralogy

Peridotite sulfides can be divided into two groups: magmatic/mantle sulfides and hydrothermal sulfides (e.g., Lorand, 1989b; Alard et al., 2000; Luguet et al., 2003; Harvey et al., 2006). The magmatic/mantle sulfides are further subdivided into two groups: residual and metasomatic. Following the terminology of Lorand et al. (1999) and Luguet et al. (2001, 2003, 2004), “metasomatic sulfide” refers to any sulfide that has been reintroduced into the mantle by a percolating melt, whether by direct precipitation or by melt–rock reaction. In contrast, residual sulfides are grains that have survived partial melting, typically as inclusions within silicate
minerals (Alard et al., 2000; Luguet et al., 2001; Harvey et al., 2006, 2011). Survival of partial melting implies a degree of melting ≤ 10–15% beneath the ridge axis, depending on the starting sulfur content of the peridotite (Luguet et al., 2003; Fonseca et al., 2012). Global estimates for degree of melting in abyssal peridotites and mid-ocean ridge basalts (MORBs) suggest an average of < 10% melting (Klein and Langmuir, 1987; Johnson et al., 1990; Salters and Stracke, 2004; Workman and Hart, 2005), so preservation of residual sulfides in peridotites can occur. Detailed modeling of the SWIR Oblique Segment by Montési et al. (2011) indicates an average degree of melting of ~ 7%, with a maximum of 12% for peridotites from this area.

The composition of residual and metasomatic sulfides plots in the Fe–Cu–Ni–S system, with minor Co and Zn (Dromgoole and Pasteris, 1987; Lorand, 1989b). At high temperature, the bulk composition of mantle sulfides corresponds to monosulfide solid solution (Mss) and intermediate solid solution (Iss). Subsolidus re-equilibration results in replacement of Mss by pentlandite–pyrrhotite and Iss by chalcopyrite (Kellerud et al., 1969; Lorand, 1989b; Alard et al., 2000). Luguet et al. (2003) found that mantle sulfides in abyssal peridotites consist mainly of pentlandite ([Fe,Ni]$_8$S$_8$), with additional occurrences of chalcopyrite (CuFeS$_2$) ± pyrrhotite (Fe$_7$S$_8$) ± bornite (Cu$_4$FeS$_4$).

Distinguishing between residual and metasomatic sulfides is based on mineralogical and textural relationships. Texturally, metasomatic sulfides are found in association with metasomatic minerals, such as amphibole, melt inclusions, and secondary clinopyroxene and spinels (Lorand, 1989b; Luguet et al., 2004; Alard et al., 2005). Luguet et al. (2001, 2003, 2004) found that pentlandites of metasomatic origin often have high Ni+Cu concentrations or that they occur in association with chalcopyrite and bornite, compositions that are similar to immiscible sulfides found in MORBs (Czamanske and Moore, 1977; Roy-Barman et al., 1998). At a bulk sample level, metasomatism is often associated with Pd$_N$/Ir$_N > 1$ (where N indicates normalization to chondrite), but heterogeneity among sulfide populations within individual samples means that each sulfide grain must be assessed individually to determine its origin (Luguet et al., 2001). Out of 13 peridotites in this study, eight were measured for bulk rock Pd and Ir concentrations (Warren, unpublished data). Only one sample, Van7–85–49, has Pd$_N$/Ir$_N > 1$, but petrographic observations indicate that all samples contain metasomatic sulfides.

Residual sulfides have predominantly pentlanditic compositions, suggesting an origin as refractory Mss grains, but the occurrence of pentlandite does not uniquely indicate a residual origin (Luguet et al., 2003). Residual sulfides tend to occur as inclusions within grains, which may allow them to survive high degrees of partial melting (Alard et al., 2000; Luguet et al., 2003; Harvey et al., 2006, 2011). However, the occurrence of a sulfide as an inclusion does not necessarily indicate a residual origin either. An example of a sulfide associated with metasomatic spinel, both of which are included in clinopyroxene, is shown in Fig. 1B. Detailed work by Luguet et al. (2001, 2003, 2004) has demonstrated that sulfide inclusions in clinopyroxene are often metasomatic, but that inclusions in orthopyroxene are generally of residual origin.

Alteration of peridotites by either seafloor weathering or serpentinitization can result in partial replacement of mantle sulfides or direct precipitation of sulfides from hydrothermal fluids (Ramdohr, 1967; Lorand, 1985; Alt and Shanks, 2003; Luguet et al., 2003; Klein and Bach, 2009). Hydrothermal sulfides occur in veins or as disseminated grains and have a variety of compositions, including pentlandite, chalcopyrite, pyrrhotite, and occasionally pyrite and marcasite (Luguet et al., 2003, 2004). Weathering and serpentinitization produce additional sulfide minerals (including magnetite, awaruite, godlevskite, heazlewoodite, millerite, polydymite, and native copper) as a function of low-temperature redox conditions (Luguet et al., 2003; Alt

Fig. 1. Plane polarized reflected light photomicrographs of sulfides in abyssal peridotites. (A) Intergranular sulfides at boundary between olivine and pyroxene, and as inclusions in pyroxene (sample Vulc5–41–15). (B) Inclusion of pentlandite and spinel in clinopyroxene (sample HL0102–34–24). (C) Intergranular sulfide displaying lobate, fractal shape, with intergranular sulfide at boundary between olivine and pyroxene, and as inclusions in pyroxene (sample Vulc5–41–15). (D) Two-phase intergranular sulfide, consisting of pentlandite and chalcopyrite, with alteration to magnetite (sample Van7–86–25).
Table 1
Abyssal peridotite sample descriptions and sulfide compositions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lith</th>
<th>Petrography</th>
<th>Grain Size (µg)</th>
<th>Os % Blank ppm</th>
<th>Re % Blank ppb</th>
<th>Pb % Blank ppm</th>
<th>TMA (Ga)</th>
<th>TRD (Ga)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gakkel, Eastern Volcanic Zone</td>
<td>HLY0102-70-62</td>
<td>Harz Sulf in Oliv/ Serp mesh</td>
<td>125 168</td>
<td>0.03%</td>
<td>1.35</td>
<td>0.1162</td>
<td>38.7 0%</td>
<td>310 1.11</td>
</tr>
<tr>
<td></td>
<td>HLY0102-70-91</td>
<td>Lherz Sulf in Oliv/ Serp mesh</td>
<td>4 9</td>
<td>0.60%</td>
<td>2.20</td>
<td>0.3</td>
<td>15 60%</td>
<td>3.75 0.83</td>
</tr>
<tr>
<td></td>
<td>Gakkel, Sparsely Magmatic Zone</td>
<td>Interstitial Sulf</td>
<td>21 100</td>
<td>0.01%</td>
<td>4.74</td>
<td>0.1209</td>
<td>5.1 8%</td>
<td>244 0.25</td>
</tr>
<tr>
<td></td>
<td>P559-201-39</td>
<td>Harz Sulf enclosed in Cpx</td>
<td>68 14</td>
<td>0.38%</td>
<td>0.21</td>
<td>0.1238</td>
<td>9.8 1%</td>
<td>144 3.36</td>
</tr>
<tr>
<td></td>
<td>P559-235-17</td>
<td>Lherz Interstitial Sulf</td>
<td>17 81</td>
<td>0.07%</td>
<td>4.77</td>
<td>0.1267</td>
<td>5.1 1%</td>
<td>301 0.30</td>
</tr>
<tr>
<td></td>
<td>P559-317-6</td>
<td>Harz Interstitial Sulf</td>
<td>31 10</td>
<td>0.52%</td>
<td>0.33</td>
<td>0.1323</td>
<td>1.1 5%</td>
<td>36 0.52</td>
</tr>
<tr>
<td></td>
<td>PS86-6-38</td>
<td>Large Interstitial Sulf</td>
<td>116 236</td>
<td>0.00%</td>
<td>2.03</td>
<td>0.1500</td>
<td>42.5 0.4%</td>
<td>367 0.87</td>
</tr>
<tr>
<td></td>
<td>Van7-85-42</td>
<td>Lherz Interstitial Sulf</td>
<td>285 122</td>
<td>0.01%</td>
<td>0.43</td>
<td>0.1278</td>
<td>13.3 3%</td>
<td>47 0.53</td>
</tr>
<tr>
<td></td>
<td>Van7-85-42</td>
<td>Interstitial Sulf</td>
<td>47 36</td>
<td>0.02%</td>
<td>0.77</td>
<td>0.1274</td>
<td>1.8 19%</td>
<td>38 0.24</td>
</tr>
<tr>
<td></td>
<td>Van7-85-47</td>
<td>Lherz Sulf on Cpx cleavage</td>
<td>117 328</td>
<td>0.00%</td>
<td>2.82</td>
<td>0.1275</td>
<td>31.6 1%</td>
<td>271 0.46</td>
</tr>
<tr>
<td></td>
<td>Van7-85-47</td>
<td>Sulf on Cpx cleavage</td>
<td>15 24</td>
<td>0.27%</td>
<td>1.60</td>
<td>0.1301</td>
<td>1.0 6%</td>
<td>66 0.20</td>
</tr>
<tr>
<td></td>
<td>Van7-85-47</td>
<td>Sulf on Cpx cleavage</td>
<td>7 3</td>
<td>1.0 6%</td>
<td>1.64</td>
<td>137</td>
<td>12 68%</td>
<td>0.99 0.45</td>
</tr>
<tr>
<td></td>
<td>Van7-85-49</td>
<td>Sulf on edge & inside Cpx</td>
<td>12 41</td>
<td>0.16%</td>
<td>3.40</td>
<td>1.64</td>
<td>137</td>
<td>12 68%</td>
</tr>
<tr>
<td></td>
<td>Van7-85-49</td>
<td>Sulf on edge & inside Cpx</td>
<td>5 0.7%</td>
<td>168</td>
<td>29 46%</td>
<td>5.79</td>
<td>1.08</td>
<td>37.960 0.084</td>
</tr>
<tr>
<td></td>
<td>Van7-85-49</td>
<td>Sulf on edge & inside Cpx</td>
<td>112 0.5 12.63%</td>
<td>0.004</td>
<td>0.1176</td>
<td>0.0023</td>
<td>0.3 17%</td>
<td>3 2.15</td>
</tr>
<tr>
<td></td>
<td>Van7-85-49</td>
<td>Sulf on Cpx cleavage</td>
<td>91 0.3 19.69</td>
<td>0.003</td>
<td>0.1362</td>
<td>0.0031</td>
<td>0.1 38%</td>
<td>1 1.62</td>
</tr>
<tr>
<td></td>
<td>Van7-96-28</td>
<td>Sulf on Cpx cleavage</td>
<td>44 22</td>
<td>0.29%</td>
<td>0.51</td>
<td>0.1357</td>
<td>9.5 1%</td>
<td>215 2.04</td>
</tr>
<tr>
<td></td>
<td>Van7-96-28</td>
<td>Sulf on Cpx cleavage</td>
<td>33 44</td>
<td>0.15%</td>
<td>1.32</td>
<td>0.1339</td>
<td>7.5 1%</td>
<td>228 0.83</td>
</tr>
<tr>
<td></td>
<td>Van7-96-38</td>
<td>Sulf on Cpx cleavage</td>
<td>24 20</td>
<td>0.32%</td>
<td>0.46</td>
<td>0.1306</td>
<td>2.9 2%</td>
<td>65 0.67</td>
</tr>
<tr>
<td></td>
<td>Van7-96-38</td>
<td>Sulf on edge & inside Cpx</td>
<td>46 1.6%</td>
<td>34</td>
<td>40 38%</td>
<td>0.87</td>
<td>0.12</td>
<td>37.678 0.084</td>
</tr>
</tbody>
</table>

\(^a\) The largest source of error is due to uncertainty in the blank composition. For Os and Re, the uncertainty due to the blank composition is assumed to be 50%. For Pb, blank uncertainty is the standard error of 6–10 blank analyses.

\(^b\) TMA is the separation time from chondritically-evolving mantle; TRD is the minimum age for Re depletion; both are calculated following Shirey and Walker (1998) and using the composition of PUM from Meisel et al. (1996).
and Shanks, 2003; Alard et al., 2005; Klein and Bach, 2009). Sulfides produced by alteration can be distinguished from mantle sulfides by detailed petrographic and compositional analysis (Luguet et al., 2003, 2004; Klein and Bach, 2009). In Fig. 1D, the sulfide is of probable hydrothermal origin, consisting of pentlandite and chalcopyrite with a rim of magnetite and surrounded by serpentinized olivine. These types of sulfides were avoided when selecting grains for isotopic analysis.

Major element data for Gakkel and SWIR sulfides indicate a predominant mineralogy of pentlandite with minor pyrrhotite and chalcopyrite. In an electron microprobe survey of sulfides in thin sections for eight SWIR peridotites, we found that 16 were pentlandites (28–44% Fe, 13–38% Ni, 33–37% S), while one grain from a pyroxenite vein was chalcopyrite. Liu et al. (2009) analyzed sulfides in 11 Gakkel peridotites by electron microprobe. They found that 31 of 42 sulfides consisted of pentlandite with minor pyrrhotite and/or chalcopyrite, while the other 11 grains were pyrrhotite or chalcopyrite. Quantitative microprobe data were not collected on the sulfides used for isotopic analysis in this study, as carbon coating would have contaminated the grains. However, preliminary standard-addition ICPMS analysis of Fe–Cu–Ni–Co solutions collected during column chemistry indicates that the sulfides are pentlandite with minor amounts of chalcopyrite and pyrrhotite.

In this study, a total of 21 sulfides from 13 Gakkel and SWIR peridotites were extracted for Re–Os and Pb isotopic analysis (Table 1). One sulfide per sample was analyzed for the seven Gakkel peridotites, while multiple (2–4) grains were analyzed for five of the six SWIR peridotites. The difference in number of sulfides per sample is due to the limited availability of material from the Gakkel and does not reflect any systematic difference in modal abundance or grain size between the two ridges. All sulfides were extracted from polished slabs and the petrography of each sulfide was studied prior to removal (Table 1).

Examples of petrographic relationships for sulfides in this study are shown in Fig. 1. The morphologies of Gakkel and SWIR sulfides are similar to previous studies of abyssal peridotite sulfides (Alard et al., 2000; Luguet et al., 2003; Harvey et al., 2006; Liu et al., 2009), occurring as both inclusions in silicate minerals and as interstitial phases. Out of 21 sulfides, seven grains were inclusions in clinopyroxene, one was an inclusion in orthopyroxene and the remaining 12 were interstitial grains (Table 1). Based on petrographic observations, only the sulfide included in orthopyroxene (sample PS59-317-6) is likely to be of residual origin, while the remainder of the sulfides are metamorphic in origin. Fig. 1A demonstrates the lack of distinction that often occurs between intergranular and inclusion sulfides, as the intergranular sulfides continue into the clinopyroxene grain as inclusions, with all grains being interpreted as metamorphic in origin.

4. Methods

Re–Os–Pb were extracted from sulfides using the Re–Os method for diamond sulfides (Pearson et al., 1998; Pearson and Shirey, 1999), with modifications to include separation and analysis of Pb. To extract sulfides, hand-polished slabs of peridotite were prepared and studied petrographically to document the relationships between sulfides and adjacent minerals. Grains were removed from slabs using a diamond scribe to etch around and under the grain. Each grain was cleaned by ultrasonication in double-distilled acetone followed by Milli-Q water. Grains were weighed to 1 µg precision (Table 1) and spiked for 185Re–190Os. Dissolution and simultaneous micro-distillation of Os were done using chromic–sulfuric acid, with collection of Os in HBr. The remaining solution was spiked with 205Pb and passed through anion exchange resin (AG1x8) columns, using 1N HCl as the eluant. During the primary separation, Fe–Cu–Ni–Co, Re, and Pb were separated. The Pb solutions were then passed again through the columns for further purification.

Analysis of Re concentration by isotope dilution was initially done using the modified 15 in. radius thermal ionization mass spectrometer (TIMS) at the Department of Terrestrial Magnetism (DTM), with Re loaded on Pt filaments and ionized as ReO2+. Following the acquisition of a Nu Plasma multicollector inductively coupled mass spectrometer (MC-ICPMS) and decommissioning of the 15 in. radius TIMS, Re analysis was transferred to the Nu Plasma. For the MC-ICPMS analyses, Re was dissolved in HNO3, injected as a wet plasma, and measured in static mode on the ion counters. Sample amounts varied from 0.1 to 43 pg (Table 1) and blanks varied from 63 to 425 fg, depending on the reagent batch. In general, blanks contribute <8% to the total Re measured (Table 1). Some of the very small sulfides have higher concentration blanks: the blank is 38% for a sulfide with 1 ppb Re and 16–19% for three sulfides that have 3–82 ppb Re.

Os analyses were initially carried out using the 15 in. radius TIMS and subsequently transferred to the ThermoFisher Triton TIMS when the 15 in. instrument was decommissioned. In both cases, Os was loaded on Pt filaments, metalized, ionized as OsO2, and measured in dynamic mode on a single, discrete-dynode, secondary electron multiplier (SEM). Measured OsO2 ratios were corrected to a value of 3.0857 for 189Os/187Os and 189Os in amounts of 0.2–1 ng on the Triton SEM, gave 186Os/187Os=0.1198±0.0016, 187Os/188Os=0.1741±0.0015, 188Os/187Os=1.2192±0.0065, 190Os/188Os=1.9877±0.0019, and 190Os/187Os=3.0897±0.0131. For comparison, Luguet et al. (2008) reported 14 replicate analyses of DTM J-M Os, in amounts of 10–100 ng measured using the Triton Faraday cups, as 188Os/187Os=0.1200, 188Os/187Os=0.1739, 189Os/188Os=1.2197, and 190Os/188Os=1.9838.

Pb was analyzed with the Triton TIMS in peak switching mode on the SEM, using Re filaments and CdH silica gel emitter (Gerstenberger and Haase, 1997). Replicate analyses (reported uncertainties are 2σ standard deviations) of the DTM J-M Os Standard, in amounts of 0.2–1 ng on the Triton SEM, gave 186Pb/184Pb=1.9877±0.0016, 187Pb/184Pb=1.9877±0.0019, and 188Pb/184Pb=3.0897±0.0131. For comparison, Luguet et al. (2006) reported 15 in. radius TIMS Pb analyses of DTM J-M Os, in amounts of 10–100 ng measured using the Triton Faraday cups, as 186Pb/184Pb=0.1200, 188Pb/184Pb=1.2197, and 190Pb/184Pb=1.9838.

Repeat measurements (n=15, with uncertainties reported as two standard deviations) of the DTM J-M Os Standard, in amounts of 0.2–1 ng on the Triton SEQ, gave 186Os/187Os=0.1198±0.0016, 187Os/188Os=0.1741±0.0015, 188Os/187Os=1.2192±0.0065, 190Os/188Os=1.9877±0.0019, and 190Os/187Os=3.0897±0.0131. For comparison, Luguet et al. (2008) reported 14 replicate analyses of DTM J-M Os, in amounts of 10–100 ng measured using the Triton Faraday cups, as 186Os/187Os=0.1200, 188Os/187Os=0.1739, 189Os/188Os=1.2197, and 190Os/188Os=1.9838.
10–17 pg Pb to the procedural blank. No method is currently available to further clean CrO3 with respect to Pb.

5. Results

Pb, Os, and Re were analyzed in 21 sulfide grains, weighing from 3 to 285 mg, from 13 abyssal peridotites (Table 1). For some sulfides, Pb data are not available due to Pb contamination during the analysis of one group of samples; Os data are not available for a few of the sulfides due to filament failure during metallization.

5.1. Pb, Os, and Re concentrations in sulfides

Measured Pb concentrations in peridotite sulfides vary from 0.12 to 12 ppm (Fig. 3) and average 4 ppm. Some samples with higher Pb concentrations (> 1 ppm) from dredge Van7-96 may have interacted with melts related to Bouvet hotspot, based on high clinopyroxene trace element concentrations, enriched Sr–Nd isotopic compositions and proximity to the hotspot track (Warren et al., 2009). Other high Pb samples have no evidence for such melt addition. The large concentration range among samples indicates small scale heterogeneity, including four sulfides from sample Van7-85-49 that range from 0.12 to 5.79 ppm Pb.

Most sulfides have Os concentrations in the range of 0.1–10 ppm and Re concentrations in the range of 0.01–1 ppm (Table 1), within the range for previous abyssal peridotite sulfide studies (Alard et al., 2000; Luguet et al., 2001; Harvey et al., 2006). Pb concentrations are correlated with Os concentrations, with a correlation coefficient of 0.79 among all samples and a correlation coefficient of 0.94 for Gakkel samples (Fig. 3). The SWIR samples are more scattered, probably due to equilibration with Bouvet-derived melts (le Roex et al., 1983; Standish et al., 2008; Warren et al., 2009). Concentrations are not different between the SWIR dredge closer to the Bouvet hotspot track (Van7-96) and the dredge further away (Van7-85). Some of the most elevated Re concentrations are probably due to seawater alteration, as previously reported by Harvey et al. (2006) for sulfides with elevated 187Re/188Os but normal 187Os/188Os.

5.2. Isotopic composition of the sulfides

The Pb isotopic composition of peridotite sulfides extends over a range larger than global MORB, but similar to the range of orogenic and xenolith peridotites (Fig. 4). One Gakkel sulfide, as well as clinopyroxene from a SWIR sample (Warren et al., 2009), is unradiogenic and plot to the left of the 4.53 Ga reference isochron, which is also referred to as the geochron. The only other published Pb isotopic datasets for abyssal peridotites are the studies by
Fig. 4. The variation in Pb isotopic composition of individual sulfide grains extracted from abyssal peridotites. Data for two clinopyroxene mineral separates from SWIR peridotites (Warren et al., 2009) and for MAR sulfides (Burton et al., 2012) are also shown. In the left panels, the grey shaded field outlines the general field for MORB (from PetDB; Lehnert et al., 2000), while the other fields outline basaltic compositions from the Gakkel Ridge (Goldstein et al., 2008), SWIR Oblique Segment (Standish, 2006; Standish et al., 2008) and Bouvet Island (Warren et al., 2009). In the right panels, sulfides are compared to literature data for orogenic and xenolith peridotites from whole rock and mineral separate analyses (Hamelin and Allegre, 1988; Meijer et al., 1990; Mukasa et al., 1991; Hauri et al., 1994; Carignan et al., 1996; Rosenbaum et al., 1997; Zangana et al., 1997; Mukasa and Shervais, 1999; Witt-Eickschen et al., 2003; Choi et al., 2005, 2007, 2008; Malaviarachchi et al., 2008). DM is the model composition of the present-day mantle (Zindler and Hart, 1986; Workman and Hart, 2005). The geochron is the reference isochron for mantle evolution, which is calculated assuming that core formation ended at 4.534 Ga (Hart, 1984). Therefore, the background peridotite dataset in Fig. 4 also includes a compilation of whole rock and mineral separate data from orogenic peridotites and xenoliths (see figure caption for references). This dataset was filtered to exclude any metasomatized peridotites.

Peridotite sulfides have little systematic covariation with basalt Pb isotopic compositions from the same area of the ridge (Fig. 4). The Gakkel sulfides extend over the full range of Gakkel basalt compositions, without reflecting the isotopic divide identified in basalt at 15°E (Goldstein et al., 2008). For SWIR Oblique Segment peridotites, the sulfides extend to the composition of Bouvet Island basalts, similar to Oblique Segment basalts. However, they also extend to more depleted compositions than associated basalts. SWIR samples show a rough correlation between sulfide Pb isotopic compositions and clinopyroxene Sr and Nd isotopic compositions (Fig. 5).

Sulfide 187Os/188Os ranges from 0.1162 to 0.1500, while 187Re/188Os covers a large range from 0.20 to 3.36. In general, sulfides with 187Re/188Os > 1 are interpreted to be high because of recent Re addition during hydrothermal circulation of seawater (Harvey et al., 2006). Not considering these, most sulfides cluster along a 2 Ga model age isochron (Fig. 6). Some samples plot lower than the fertile, undepleted mantle (the primitive upper mantle composition known as PUM; Meisel et al., 1996). Os isotopic compositions are correlated with Pb isotopic compositions (Fig. 7), as are the concentrations of these two elements (Fig. 3), both of which have not been observed previously.

The fidelity of the technique used in this study to determine Pb isotopic compositions is demonstrated by the agreement of results for sulfides from Van7-96-28 with previous data collected on this sample by two independent analytical techniques. Warren et al. (2009) measured two sulfides from Van7-96-28 by multi-collector ion microprobe and found an average sulfide composition of 207Pb/206Pb = 0.791 and 208Pb/206Pb = 1.998 (ion microprobe data are normalized to 206Pb, because the 204Pb signal is very small). In this study, the average ratios for two Van7-96-28 sulfides measured by TIMS are 207Pb/206Pb = 0.796 ± 0.005 and 208Pb/206Pb = 1.997 ± 0.009. Finally, the clinopyroxene mineral separate measured by TIMS by Warren et al. (2009) has a composition of 207Pb/206Pb = 0.794 ± 0.001 and 208Pb/206Pb = 1.995 ± 0.002.

5.3. Effect of alteration on sulfide compositions

Results of previous studies suggest that the Pb and Os compositions of sulfides are minimally affected by seawater alteration, while Re abundance is sometimes modified. Luguet et al. (2003) found that at low degrees of alteration, sulfides preserve their high-temperature major element compositions. They also observed that bulk rock platinum group elements (including Os) are not significantly redistributed by hydrothermal
alteration, except for Pd and Au at extreme degrees of alteration. Studies by Snow and Reisberg (1995), Alard et al. (2005), and Harvey et al. (2006) also found that Os is relatively unaffected by alteration, though Re addition can occur. Studies of the Pb isotopic composition of hydrothermal vent deposits have found that these generally have the same composition as that of associated basalts or show minor mixing with seafloor sediments (German et al., 1993; Yao et al., 2009). Serpentinites also have similar compositions to associated basalts, though 207Pb/204Pb can be elevated (Deschamps et al., 2012). This suggests that hydrothermal circulation is unlikely to significantly shift the isotopic composition of abyssal peridotite sulfides, though bulk rock Pb concentrations can be increased by the presence of serpentine (Deschamps et al., 2011; Kodolányi et al., 2012).

In this study, a few lines of evidence indicate that sulfide Pb and Os compositions are unaffected by alteration and thus reflect magmatic/mantle compositions. Peridotites have relatively low degrees of hydrothermal alteration, with one Gakkel sample being unaltered (PS59-235-17) and the rest retaining their original mineralogy with < 50% serpentinization. The sulfide from PS59-235-17 plots in the middle of the sulfide range (Fig. 4), similar to sulfides from altered peridotites (HLY102-70-91 and Van7-85-49). Sulfide Pb isotopes overlap global MORB, though with a slight elevation in 207Pb/204Pb (Fig. 4). While this could reflect the same hydrothermal alteration effect as observed in serpentine (Deschamps et al., 2012), this more likely reflects the effect of the large Pb blanks, which also have elevated 207Pb/204Pb (Fig. 2).

Another line of evidence that seawater alteration has not affected sulfide Pb and Os compositions is the correlation of sulfide Pb and Os concentrations (Fig. 3) and isotopes (Fig. 7). Seawater contamination would produce more scatter, as alteration would not systematically change these elements together. The enriched Os and Pb composition of a subset of sulfides must therefore be indigenous to these sulfides. In this case, it must be due to an enriched mantle component, which is probably the same one that contributes to the elevated Os isotopic composition typical of many MORBs (Alard et al., 2005; Gannoun et al., 2007). In contrast, Re concentrations do not correlate with either Os or Pb (Fig. 3). Re/Os ratios are high among a subset of sulfides, which do not have correspondingly high 187Os/188Os (Fig. 6). These two observations suggest that hydrothermal alteration has modified Re but not Os, similar to the observation of Harvey et al. (2006).

Two sulfides were analyzed in an abyssal peridotite (Van7-96-28) for which clinopyroxene Pb isotopic data were collected by Warren et al. (2009). The sulfides have identical Pb isotopic compositions to clinopyroxene and all three points overlap the composition of Bouvet Island basalts (Fig. 4). This overlap agrees with the interpretation that Van7-96-28 and other samples from this dredge were influenced by passage of Bouvet hotspot around 15 Ma (Hartnady and le Roex, 1985; Standish et al., 2008; Warren et al., 2009). The enriched Pb isotopic composition of the sulfides and clinopyroxene also correspond to the elevated Sr and Nd isotopic composition of clinopyroxene from this sample.
agreement between sulfide and clinopyroxene Pb isotopic compositions and their agreement with basalt data indicate that seawater alteration has not affected the Pb isotopic composition of sulfides.

6. Discussion

6.1. Pb storage in mantle phases

Previous studies have demonstrated that peridotite sulfides contain most of the Os budget of the upper mantle (Hart and Ravizza, 1996; Alard et al., 2000; Harvey et al., 2006, 2011). Based on the Pb concentration in pyroxenes and bulk rocks, mantle Pb has also been suggested to predominantly reside in sulfides (Meijer et al., 1990; Hart and Gaetani, 2006). If sulfides are the main mantle Pb reservoir, then Hart and Gaetani (2006) calculated that they should be ~ 0.07% abundant and contain ~ 75 ppm Pb.

Results from this study indicate that sulfides are not the main host for mantle Pb, at least in peridotites with this petrogenetic history. Combining the average sulfide Pb concentration of 4 ppm (Table 1) with an average sulfide mode of 0.02% (Luguet et al., 2001, 2003) gives a bulk peridotite Pb concentration of 0.8 ppb. For comparison, the estimated composition of PUM is 150 ppb (McDonough and Sun, 1995) and of the depleted mantle (DM) is 21 ppb (Salters and Stracke, 2004; Workman and Hart, 2005). Thus, these sulfides would contribute < 4% of Pb to typical DM. Using the maximum modal estimate of 0.06% for mantle sulfides determined by Luguet et al. (2003) and our maximum sulfide Pb concentration of 12 ppm, sulfides can still only contribute < 8 ppb to the total mantle Pb budget. This corresponds to ~ 40% of Pb in DM, but this value represents concentrations occurring in samples with melt refertilization.

The range of sulfide Pb concentrations (120 ppb–12 ppm) indicates that mantle sulfides have far lower concentrations than the previous estimate of 75 ppm by Hart and Gaetani (2006). This estimate was based on data for Pb concentrations in peridotite bulk rocks and silicate mineral separates by Meijer et al. (1990). However, the Meijer study compared bulk rock Pb concentrations in different samples to those used to reconstruct bulk rock compositions based on mineral separate data and mineral modes. As bulk rock Pb concentrations vary from 31 to 570 ppb in the Meijer study, combining data from different samples to determine the missing Pb component is probably the cause of the high estimate for sulfide Pb concentrations in the Hart and Gaetani study.
Recently, Burton et al. (2012) also suggested that sulfides are the main host for mantle Pb, based on analyses of sulfide Pb concentrations in an abyssal peridotite. Sulfides in their study have an average concentration of 5 ± 2 ppm \((n=8)\), which is slightly higher than the 4 ppm average in this study, but again far lower than the Hart and Gaetani estimate. All their sulfide data come from a single, sulfide-rich section of a drill core from the Fifteen-Twenty Fracture Zone. Burton et al. did not measure Pb concentrations in the bulk abyssal peridotite sample or individual silicate phases. Instead, they measured individual mineral phases in a xenolithic sample of garnet harzburgite. This data indicates that sulfides contain <2% of the bulk rock Pb, whether calculated relative to the measured or the reconstructed bulk peridotite composition. Using a relatively high modal proportion (0.08%) and the maximum measured sulfide Pb concentration, Burton et al. estimated that sulfides store up to 70% of Pb in DM containing 18 ppb Pb, which clearly must be an upper limit estimate. Instead, if their average Pb concentration of 5 ppm is combined with a modal estimate of 0.02% (Luguet et al., 2001, 2003), sulfides correspond to only 5% of Pb in DM.

In contrast, Carignan et al. (1996) measured the bulk rock composition of two peridotite xenoliths, as well as the composition of all silicate phases. Olivine in their study has an average Pb concentration of 11 ppb, orthopyroxene an average of 20 ppb, and clinopyroxene an average of 470 ppb. Combined with mineral modes, the reconstructed whole rock concentrations (21 and 29 ppb) are very similar to the measured whole rock concentration of 22 ppb, calculated from mineral modes (72% olivine, 22% orthopyroxene, 5% clinopyroxene, and 1% spinel) and Pb concentration data (16 and 40 ppb, respectively). This agreement is particularly striking given the errors associated with such low concentration analyses. Thus, the three main silicate phases in peridotites can account for mantle Pb concentrations with only a minor contribution from sulfide.

In this study, the measured bulk rock Pb concentration for abyssal peridotite Van7-85-49 is 31 ppb, determined by solution-ICPMS at WSU Geoanalytical Laboratory. This concentration corresponds closely to the reconstructed bulk rock Pb concentration of 22 ppb, calculated from mineral modes (72% olivine, 22% orthopyroxene, 5% clinopyroxene, and 1% spinel) and Pb concentration data of 2 ppb for clinopyroxene and 100 ppb for orthopyroxene from Warren et al. (2009). While olivine Pb concentration data are not available, it would only need to be ~13 ppb for the reconstructed and measured concentrations to be in agreement. This value is not unreasonable, but clearly further investigations of abyssal peridotite Pb concentrations are necessary to fully constrain the silicate phase contributions to mantle Pb storage.

Our estimated abyssal peridotite Pb concentration of ~30 ppb is slightly higher than the estimated concentration of 21 ppb Pb in DM (Salters and Stracke, 2004; Workman and Hart, 2005). Abyssal peridotites should contain less Pb than DM, as Pb is incompatible during melting. Retention of Pb in sulfides does not provide an explanation for the higher Pb in abyssal peridotites compared to DM, based on our estimate that sulfides contain <1 ppb Pb. One possible explanation is that abyssal peridotite and DM estimates are only correct within an order of magnitude—i.e., both contain ~10's of ppb Pb. The estimated concentration of Pb in DM may be too low, as this value is determined from the assumption of a “canonical” Ce/Pb or Nd/Pb ratio (Salters and Stracke, 2004; Workman and Hart, 2005). The canonical ratio derives from the suggestion that Pb has a similar bulk partition coefficient to Ce or Nd during mantle melting, based on the lack of large variations between these elements in oceanic basaltic melts (Hofmann et al., 1986; Rehkämper and Hofmann, 1997). However, Sims and DePaolo (1997) calculated a bulk peridotite of ~0.025, placing Pb midway between Ce and Nd in terms of partitioning, from which they derived an estimate of ~38 ppb Pb in DM.

Overall, the measured bulk rock concentrations for peridotites are similar to bulk rock concentrations reconstructed from silicate phases, confirming that sulfides are not a major reservoir for mantle Pb, as was recently shown by Burton et al. (2012). Instead, most Pb in the mantle resides in silicate minerals. However, while the concentrations determined for sulfides are lower than expected, they are high enough to use sulfides as a tracer of mantle Pb isotopic composition.

6.2. Pb partitioning during melting

Both Pb and Os have higher concentrations in sulfides with respect to co-existing silicates, indicating that they are more compatible in sulfides compared to silicates (Shimazaki and MacLean, 1976; Hart and Ravizza, 1996). However, results of this study indicate that sulfide Pb concentrations are lower than previously predicted, suggesting that the compatibility of Pb in sulfides during melting is also lower than expected. The Pb partition coefficient \(D_{\text{Pb}}\) between sulfide melt and silicate melt has not been directly measured, but was previously estimated to be ~200 (Hart and Gaetani, 2006).

In this study, Pb and Os in sulfides are reasonably well correlated (Fig. 3), with a correlation coefficient of 0.79, based on a York least squares regression of \(\log(\text{Pb})\) against \(\log(\text{Os})\) (York, 1966). This correlation can be used to estimate \(D_{\text{Pb}}\) by combining the concentration correlation with \(D_{\text{Os}}\) and a simple fractional melting model (Minster and Allègre, 1978; Sims and DePaolo, 1997; Workman and Hart, 2005). Os is compatible in sulfide melts compared to silicate melts, with \(D_{\text{Os}}\) estimated as \(5 \times 10^4\) from sulfide globules in basaltic glass (Roy-Barnman et al., 1998). Experimental studies have found a wider range of Os partition coefficients, from \(10^4\) to \(10^6\) as a function of oxygen fugacity, but also suggest that \(D_{\text{Os}} = 10^4\) for upper mantle conditions (Fleet et al., 1996; Fonseca et al., 2011).

Given uncertainty in \(D_{\text{Os}}\) and scatter in the sulfide concentration plot (Fig. 3), a modal fractional melting model is appropriate for estimating \(D_{\text{Pb}}\):

\[
\frac{C_{\text{Pb}}}{C_{\text{Pb}0}} = (1 - P^{(1/D_{\text{Pb}})})^{-1}
\]

where \(C_{\text{Pb}}\) is the initial concentration of Pb and \(C_{\text{Pb}0}\) is the concentration in the solid after melt fraction \(F\). A similar equation can be written for Os and the two equations equated by solving for \(F\). The result is linearized as follows:

\[
\log_{10}(C_{\text{Pb}}) = M \log_{10}(C_{\text{Os}}) + \log_{10} \left(\frac{C_{\text{Pb}0}}{C_{\text{Os}} M} \right)
\]

where \(M\) is

\[
M = \frac{D_{\text{Os}}(1-D_{\text{Pb}})}{D_{\text{Pb}}(1-D_{\text{Os}})}
\]

\(M\) is also the slope of the regression of \(\log_{10}(\text{Pb})\) against \(\log_{10}(\text{Os})\) (as shown in Fig. 3, though these regressions have slopes of \(1/M\) as \([\text{Pb}]\) is plotted on the x-axis). Thus, \(D_{\text{Pb}}\) can be solved for:

\[
D_{\text{Pb}} = \frac{1 - D_{\text{Os}}}{D_{\text{Os}} M + 1}^{-1}
\]

This gives \(D_{\text{Pb}} = 2.6\) for \(M = 0.62\) and \(D_{\text{Os}} = 5 \times 10^4\). This calculation is not sensitive to the value of \(D_{\text{Os}}\), which can vary as a function of oxygen fugacity from \(10^4\) to \(10^7\) (Fonseca et al., 2011). Across these five orders of magnitude, \(D_{\text{Pb}}\) only changes in the second decimal place due to the insensitivity introduced by the term \((1-D_{\text{Os}})\).

In contrast, \(D_{\text{Pb}}\) is sensitive to the regression slope \(M\), with \(D_{\text{Pb}} = 3.3\) if only the Gakkel sulfides are used in the regression, for which \(M = 0.69\). This value of \(D_{\text{Pb}} = 3.3\) may represent a better estimate than \(D_{\text{Pb}} = 2.6\) based on all sulfides. The SWIR samples
have considerable scatter and result in the regression being pinned by two low concentration samples (Fig. 3). The scatter among the SWIR sulfides may be due to the fact that many sulfides are predominantly Mss (or pentlandite–pyrrhotite) but can have minor chalcopyrite. As Os does not partition as strongly into Cu-rich sulfides (Alard et al., 2000; Luguet et al., 2001), the scatter in Os and Pb concentrations may reflect variable amounts of chalcopyrite in the SWIR sulfides.

Overall, the sulfide Pb and Os correlation provide an order of magnitude estimate for D_{Pb} of ~3. This confirms that Pb is more compatible in sulfide melts compared to silicate melts, but also that Pb is less compatible than previously estimated. A lower partition coefficient for Pb in sulfide provides an explanation for the relatively low sulfide Pb concentrations measured in this study compared to the prediction by Hart and Gaetani (2006).

6.3. Evolution of mantle composition

In the oceanic mantle, the long-term effect of plate tectonics is the creation of compositional heterogeneities at length-scales ranging from thousands of kilometers (e.g., Hart, 1984; Meyzen et al., 2007) to sub-kilometer (e.g., Shirey et al., 1987; Dosso et al., 1999; Standish et al., 2008; Warren et al., 2009). Sulfides from the same drill (this study) and from the same drill core (Alard et al., 2005; Harvey et al., 2006; Burton et al., 2012) preserve distinct isotopic compositions at length-scales ~1 km. This observation is similar to the large compositional range observed among olivine-hosted melt inclusions in basalts (Saal et al., 1998; Kobayashi et al., 2004; MacLennan, 2008). These melt inclusions have been interpreted as demonstrating that melts of distinct compositions can be preserved during the formation of large-volume magmas. Evidence for variability in the melt source region has previously been documented using Nd and Sr isotopes to trace compositional variability among peridotite pyroxene mineral separates from the same drill (Cipriani et al., 2004; Warren et al., 2009). Sulfide compositional variability thus agrees with the previous evidence for extremely small (~1 km) length-scales of mantle heterogeneity and provides further characterization of the nature of the source mantle for basalts.

The compositional variation of the sulfides also demonstrates the ability of recent melt remobilization to modify mantle composition. The absence of a correlation between sulfide Re and Os (Fig. 6) must have occurred recently, as otherwise Re–Os in some sulfides would not give negative ages (Table 1). Warren et al. (2009) made a similar observation with respect to the lack of isochronous relationships for Sm–Nd and Rb–Sr isotopic data for pyroxene mineral separates from SWIR peridotites. Evidence for recent melt refertilization has also been found in the form of mineralogical and major and trace element variations in abyssal peridotites (Elthon, 1992; Niu, 1997; Seyler and Bonatti, 1997; Seyler et al., 2001, 2007; Hellebrand et al., 2002; Brunelli et al., 2006; Dick et al., 2010; Warren and Shimizu, 2010). In this study, the sulfide from sample PS86-6-38 has a very radiogenic Os composition for its corresponding Pb isotopic composition, though this sample plots near the 2 Ga Re model age line (Fig. 6). This sample has relatively high trace element concentrations and high modal clinopyroxene (13%), along with an enriched Nd–Sr isotopic composition (Warren et al., 2009), all of which suggest melt infiltration during the passage of Bouvet hotspot. The excess radiogenic Os in this sample, relative to the Pb and Os isotopic correlation displayed by other samples, may be due to rhenium-enriched material in the hotspot source. This would be expected if this source mantle contained recycled crustal material.

Excluding the sulfide from sample PS86-6-38, sulfide Pb and Os isotopes are correlated, with an average correlation coefficient of 0.8 (Fig. 7). Both systems yield similar model ages: in Fig. 4, the Pb isotopic composition of mantle sulfides aligns along the 2 Ga data array for oceanic basalts and peridotite mineral separates. In Fig. 6, the Re–Os datasets for SWIR, MAR and Gakkel sulfides all plot along the 2 Ga Re model age line. The observation of a Pb–Os isotopic correlation (Fig. 7), a ~2 Ga age, and a very small (~1 km) length-scale of peridotite compositional variability can be explained either by (1) a predominant depletion event due to crustal extraction at 2 Ga or (2) an average mixing age for the mantle.

If the actual age of mantle depletion and heterogeneity is ~2 Ga, this indicates that upper mantle variability directly reflects melting, depletion, and re-mixing of components at this specific time. The sensitivity of Os to melt removal effects, the coupling of Os with Pb, and the small scale of the heterogeneities seen in the sulfide data would then require a major event around 2 Ga. Detrital zircon age distributions document episodic growth of the continental crust with a major crust-building event at 1.9 Ga (Kemp et al., 2006; Condie and Aster, 2010). This continental growth has been proposed to result from super-plume events (e.g., Condie, 1998) or from more pronounced subduction that drove large-volume mantle depletion and crust formation (e.g., Shirey and Richardson, 2011).

If the sulfides reflect an episode of continental crustal growth, then we would expect any of the individual sulfide grains to record the 2 Ga time of melting, as observed for a large number of grains in Fig. 6. However, Fig. 6 also shows that most of our data are derived from only slightly depleted peridotites, with the sulfides varying from chondritic ($^{187}\text{Re}/^{188}\text{Os}=0.42$) to super-chondritic ($>0.42$) compositions. Unless all these sulfides have undergone recent metasomatic addition of Re, a single depletion event that can explain the Os data seems unlikely. Furthermore, episodes of peak crustal formation have also been identified at 2.7, 1.0, 0.6, and 0.3 Ga (Condie and Aster, 2010), but sulfide data from three ocean ridges – Gakkel, SWIR and MAR – do not show any other age peaks. In contrast, continental lithospheric mantle records Os model age peaks that correspond to peaks in zircon age distributions (e.g., Pearson et al., 2007).

The alternative possibility for the sulfide array is that depletion is caused by crust extraction, but specific pulses of continental crust formation cannot be mapped out in samples from the convecting mantle. Instead, the sulfide array is an average mixing age over the history of the Earth, reflecting multiple events of oceanic lithosphere formation and recycling. The mixing of ancient components back into the mantle by subduction has long been suggested as an explanation for the heterogeneity of the oceanic basalt array (e.g., Chase, 1981; Hofmann and White, 1982; Zindler and Hart, 1986; Kellogg et al., 2007), as has delamination of subcontinental lithospheric mantle (e.g., Widom et al., 1999; Gao et al., 2002; O'Reilly et al., 2009). While recycled slab components or pieces of subcontinental lithospheric mantle would be distributed on a scale smaller than the source region for MORBs, mixing down to the scale of individual peridotite samples is unlikely. Based on the small length-scale variability in our sulfide dataset, we suggest that trapped melts also play an important role in the generation of heterogeneous oceanic mantle. Melt extraction at ridges is often incomplete, with a residual trapped melt fraction resulting in peridotite refertilization (e.g., Elthon, 1992; Seyler et al., 2001; Hellebrand et al., 2002). Subduction zones also play a role in mantle refertilization, through the addition of components to the mantle wedge.

In this model, sulfide Pb–Os ages reflect the prior multi-stage history of convection as recorded by the oceanic mantle. Sulfides produced during ridge melting events would range from sub-chondritic to supra-chondritic in $^{187}\text{Re}/^{188}\text{Os}$, as seen in Fig. 6, depending on the degree of melt removal and addition. In this scenario, variability among sulfides is due to previous processing at ancient ridges, with sulfides retaining different $^{187}\text{Re}/^{188}\text{Os}$ at the sulfide-grain scale through the typical mantle convection cycle. Mantle heterogeneity is thus produced across a range of length-scales by a combination of mantle mixing and melt refertilization. In addition to the small length-scale heterogeneity, a subset of sulfides
have unradiogenic Pb and Os isotopic compositions that confirm the occurrence of depleted reservoirs in the convecting mantle.

6.4. Ultra-depleted reservoirs in the mantle

Results from this study confirm the occurrence of ancient depleted reservoirs in the oceanic upper mantle, which can be sampled in abyssal peridotites but are difficult to observe in MORBs. Recent studies using the isotope systems Sm–Nd (Cipriani et al., 2004), Rb–Sr (Warren et al., 2009), Lu–Hf (Stracke et al., 2011), and Re–Os (Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008; Burton et al., 2012) have all found that abyssal peridotites extend to more depleted compositions than MORBs. In addition, some ridge sections consist of ultra-depleted peridotite with little or no overlying crust, suggesting the occurrence of pre-existing mantle depletion in these regions. The best examples of this are the Fifteen-Twenty Fracture Zone on the MAR (Kelemen et al., 2007; Seyler et al., 2007) and the eastern SWIR between the Melville Fracture Zone and the Rodrigues Triple Junction (Cannat et al., 2003; Seyler et al., 2003).

This study extends the observation of depleted mantle reservoirs in abyssal peridotites to the Pb isotope system, with significant implications for the storage of Pb in the oceanic upper mantle. Sulfides cover the full array of MORB Pb data (Fig. 4), while also extending to more depleted compositions than basalts. The geochron in Fig. 4 is the present-day isochron that tracks the evolution of 208Pb and 206Pb (both are daughter products of U) in the Earth. Oceanic basalts plot almost entirely to the right of the geochron, yet by mass balance there must be material that plots to the left, if the silicate earth has remained a closed system since core formation (e.g., Hofmann, 2003). This unradiogenic material has long been sought and its absence is termed the “first Pb-paradox” (Allègre, 1969).

For peridotites, the geochron does not appear to represent a compositional boundary (Fig. 4). In addition, peridotites extend to the most unradiogenic compositions of any mantle-derived sample (Malaviarachchi et al., 2008; Burton et al., 2012). Combined with evidence from peridotite Nd, Sr, Hf, and Os isotopes, the upper mantle that is sampled at ridges must contain volumetrically large reservoirs of depleted unradiogenic material. The presence of a large volume of unradiogenic Pb in the mantle has also been suggested based on bulk rock trace element concentrations (Godard et al., 2005; Kelemen et al., 2007; Hanghøj et al., 2010) and in a recent study of sulfide Pb isotopes (Burton et al., 2012). In contrast, most other material, such as continental crust, sediments, and oceanic basalts, rarely plot to the left of the geochron. Unradiogenic Pb compositions have been found in some lower crustal xenoliths (Reid et al., 1989) and granulite terrains (Moorbath et al., 1969), suggesting that this is another reservoir for depleted material, though the average composition of lower crustal xenoliths plots to the right of the geochron (Rudnick and Goldstein, 1990).

The peridotite trend in Fig. 4 suggests that the upper mantle contains sizable reservoirs of highly depleted peridotite, as 24% of peridotites plot to the left of the geochron. While roughly a quarter of peridotites are unradiogenic, less than 3% of MORBs plot to the left of the geochron. A caveat to these statistics is that the global Pb dataset for peridotites is restricted in number (153 samples) and geographic extent, so the relative abundance of unradiogenic to radiogenic peridotites may change as more samples are analyzed. However, the difference between the peridotite and MORB datasets with respect to the unradiogenic end of the spectrum is striking (Fig. 4). For refractory mantle domains to be a significant reservoir of the “missing” unradiogenic Pb referred to in the first Pb-paradox depends on three factors: (i) the degree of isotopic depletion of these reservoirs, (ii) the total amount of Pb in these reservoirs, and (iii) the size of these reservoirs. As 24% of peridotites are unradiogenic (Fig. 4), this may indicate that refractory domains form a quarter of the present-day mantle. Improved constraints on Pb concentrations in these domains are necessary before a full mass balance can be carried out.

The decoupling of basalt and peridotite Pb – and Nd, Sr, Hf – isotopic compositions can be explained by a combination of processes. The development of depleted isotopic signatures in the mantle requires the formation of low abundances of parent elements over the previous 1000–s–1000’s of million years. Hence, refractory domains may originate as recycled oceanic lithospheric mantle that was depleted by melt extraction in either a ridge or arc environment. In particular, the upper section of oceanic lithospheric mantle undergoes the highest degrees of melting and has been suggested as the source of ultra-depleted reservoirs based on peridotite trace element systematics (Godard et al., 2005; Kelemen et al., 2007; Hanghøj et al., 2010). Basalts are weaker tracers of recycled lithosphere, but Salters et al. (2011) were able to identify the presence of depleted mantle domains in oceanic basalt sources based on Nd–Hf isotopic trends among hundreds of basalts. After lithospheric mantle is recycled back into the asthenosphere, it may undergo little or no melting beneath the present-day ridge, resulting in a minimal contribution to the isotopic composition of MORB (Liu et al., 2008; Malaviarachchi et al., 2008). In addition, any melt from these domains will contain smaller quantities of Pb relative to melts from more enriched domains, and thus this unradiogenic component will be diluted when these melts mix to form basalts (Warren et al., 2009).

Evidence for unradiogenic Pb in peridotites should be accompanied by other evidence for peridotite depletion. However, the trace and major element composition of peridotites have often been modified by recent melt refertilization (e.g., Elthon, 1992; Seyler et al., 2001; Hellebrand et al., 2002), with the result that isotopic compositions rarely correlate with other parameters of depletion (Warren et al., 2009). In this study, sulfide Pb isotopes roughly correlate with pyroxene Sr and Nd isotopes from the same sample (Fig. 5), but Warren et al. (2009) found no correlation between these Sr and Nd isotopes and other non-isotopic indicators of depletion. In a study of clinopyroxene Hf and Nd isotopes in Gakkel and SWIR peridotites, Stracke et al. (2011) found a correlation between Hf isotope depletion and major and trace element depletion, which their modeling showed reflected a combination of melt depletion and refertilization. Similarly, the highly unradiogenic samples from the Horoman Peridotite are mainly plagioclase lherzolites that have undergone melt refertilization (Malaviarachchi et al., 2008, 2010) and show no correlation between isotopic composition and bulk rock major or trace elements. However, if refertilization was recent and by a melt containing similarly unradiogenic Pb (i.e., a melt from the surrounding area), then this can explain these samples having elevated major and trace element compositions while still recording unradiogenic Pb.

7. Conclusions

The Pb and Re–Os composition of single sulfides from abyssal peridotites have been analyzed to constrain oceanic mantle composition and evolution. Sulfides from the Gakkel ridge and SWIR contain 0.12–12 ppm Pb, 0.001–0.4 ppm Re, and 0.003–5 ppm Os. Hydrothermal alteration has had a minimal effect on sulfide Pb and Os compositions, based on (i) the comparison of sulfides from fresh and partially altered peridotites, (ii) measurement of an identical Pb isotopic composition in sulfide and clinopyroxene from the same sample, and (iii) correlations between Pb and Os isotopes and concentrations. In contrast, Re is not correlated with Pb and Os, with some samples containing high 187Re/187Os at relatively low 187Os/187Os, both of which suggest modification by hydrothermal alteration.
The Pb and Os concentrations of sulfides are correlated and this correlation provides an estimate of ~3 for the Pb partition coefficient between sulfide melt and silicate melt. This estimate is lower than previous estimates for sulfide Pb partitioning, indicating that Pb is not as compatible in sulfides as previously suggested. Previous studies have also suggested that sulfides are the main host for mantle Pb. However, a revised comparison of bulk rock and mineral Pb concentrations demonstrates that the majority of peridotite Pb is stored in silicate phases. Results of this study show that sulfides contain <1 ppb of the total Pb in peridotites, which corresponds to <4% of the Pb in DM.

Abyssal peridotite sulfides cover an isotopic range extending from 206Pb/204Pb = 17.0 to 19.6, 187Os/188Os = 0.116 to 0.150, and 187Re/188Os = 0.20 to 3.36. Pb and Os isotopic compositions are correlated, with sulfides in both isotope systems plotting along ~2 Ga isochrons. The coupling of Pb and Os, the ~1 km length-scale of the isotopic variations, and the occurrence of superchondritic 187Re/188Os support an origin for this “age” by ancient ridge melting and refertilization combined with recycling of oceanic lithosphere back into the mantle, to give an average of ~2 Ga.

The Pb isotopic composition of sulfides extends to very depleted compositions that plot to the left of the geochron in a diagram of 207Pb/204Pb versus 206Pb/204Pb. Combined with Pb isotopic data for 187Re/188Os, Pb and Os isotope systematics of mantle peridotites from Late Cenozoic alkaline lavas, South Korea. Geochim. Cosmochim. Acta. 65 (21), 4241–4252.

